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ABSTRACT

Theoretical discussion proposing that the minimum
expected cost of developing a large scale military
system under conditions of uncertainty is achieved
by over-shooting effectiveness goals. Implications
of the theory in regard to the timing of planning
and acquisition are explored and the relationship
between the theory and policy is discussed.
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DECISION MAKING UNDER UNCERTAINTY:
OVERSHOOTING EFFECTIVENESS IN LARGE SCALE MILITARY SYSTEMS

This paper deals with the allocation of resources to large scale military
systems where the planning and acquisition period prior to the operating
phase is of several years duration. A characteristic of this type of
resource allocation decision, e.g., the acquisition of a major electronic
system, is the uncertainty involved in terms of the engineering outcome,
the problem of interface with other systems, and the state of the world in
which the system must operate. This paper suggests that one means of
approaching this uncertainty is to overshoot the effectiveness target
relative to what is estimated as the most likely military effectiveness
requirement for an assigned mission.

The general theory is developed in the next section. Following that, an
analytic solution is presented using a dynamic programming formulation.
The theory of overshooting is shown to have implications in terms of the
relative timing of research and acquisition, as well as in terms of the
number of projects which should be undertaken with a fixed budget. While
serious obstacles make the testing of the concepts discussed difficult,
there are certain lessons to be learned from the theory itself which can
lead to improved policies concerning system choice. These lessons conclude
this discussion.

I. GENERAL THEORY

Two salient characteristics of electronic systems are that they take
several years to be developed, and that considerable uncertainty surrounds
their ultimate effectiveness as well as the future environment in which they
will operate. This uncertainty assumes the form of questions as to the
performance of planned system components, the degree to which they present
coordination problems with other components, enemy posture at the time the
system is operational, as well as other military and political considerations.
The two major types of uncertainty then are, for our purposes, related to
"engineering" or "state of the universe" considerations. In the face of this,
the decision maker must select a level of resource allocation in a military
system which is required to attain a pre-assigned mission at a set future
time. Examples of such a mission might be to identify and report enemy
aircraft, notify a Commander of a nuclear event, or to keep the President
informed.

1This paper seeks to extend the work of William Marcuse, Strategy for Treating
Uncertainty in the Planning and Review of Military System Procurement Programs,
The MITRE Corporation, Bedford, Mass., W-4444, 6 November 1961. Certain
concepts of William Marcuse are reviewed here without further reference. I
also wish to acknowledge the helpful suggestions of James R. Miller, III.
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The following assumptions are made, most of which will subsequently be
relaxedt

1. The resource allocation under consideration relates to a large
scale integrated system which must accomplish a given mission
at a fixed date several years hence.

2. The system has three time phases, planning (research), acquisition,
and operation. Only the acquisition (procurement and construction)
phase is of interest here, and the terminal dates are prescribed
by higher authority.

3. There is no military advantage associated with earlier operation of
the system, nor with a system which more than accomplishes the pre-
determined mission.

4. Effectiveness units are somehow measurable and thus provide a uni-.
dimensional numeraire or standard.

5. The function of the decision maker in this context is to minimize
the expected cost of acquisition associated with achieving the
given mission.

The thesis of this paper is the net expected cost2 may be minimized by
overshooting relative to the estimated required effectiveness level. It is
assumed for the time being that the decision refers to two time periods and
that there exists a symmetric probability function which defines the likeli-
hood viewed from period one, thaS any given number of effectiveness units
will be necessary in period two. In other words, the decision maker selects
a programmed effectiveness level in this p- d and in the next period finds
out how accurate his judgment was. He can , r in either of two directions.
He can overbuild 4 the system, or he can allotate insufficiently and face the
need to "reprogram" or revise upward his previous acquisition plans. The
crux of this paper is that in large scale systems, e.g., electronic ones,

2 Net expected cost is defined as the difference between the actual cost and
the cost which would have resulted had the required effectiveness level been
known in advance with certainty. In the two period analysis which follows,
if this level is overestimated relative to actual needs, the net cost is that
of overbuilding; if this level is underestimated, it is that of reprogramming
upward.

3 The approach to decisions beyond the two-period horizon is discussed later.
4 Overbuilding and overshooting are related but differentiable. The following
definitions differ slightly from those of W. Marcuse (W-4444, p.9): Over-
shooting is the ex ante decision to allocate resources to a system in excess
of the expected requirement. Overbuilding is the ex post result if a larger
than optimal number units, or amount of capacity, is actually procured.
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the cost of reprogramming may greatly exceed the cost associated with
attaining more than the required level of effectiveness; hence the decision
maker should consider overshooting relative to the expected effectiveness
requirement. He may minimize the expected cost of overshooting plus the
expected cost of reprogramming by allocating at a level which is higher
than that believed necessary to just accomplish the mission.

This theory may be examined in terms of a loss function in the two period
case (the words "loss" and "cost" are used interchangeably). The decision
maker is unable to predict in period one the precise effectiveness required
in period two but can attach a probability distribution to the outcomes as
illustrated in Figure 1..6

Figure I

f(x) = probability
density

f(A):

/x required
effectiveness

Probability Density Function of Effectiveness
Required in Period II as Viewed in Period I

5 In the multi-period case examined subsequently, it may be desirable to over-
shoot even if the reprogramming cost does not exceed that of rebuilding, (per
unit of effectiveness), for two reasons. First, overshooting may save a
number of instances of reprogramming. Second, if effectiveness goals are not
overshot, it is possible that an intermediate re-examination during the
acquisition stage results in reprogramming upward, even though the final
effectiveness requirement may not exceed the initial estimate.

6The probability distribution is symmetric in this example. It is suggested
that present practice is to set the programmed effectiveness level either at
the most likely (mode) or at the expected (mean) value. The symmetric dis-
tribution obviates the need to examine which (mode or mean) best describes
current policy. It is suspected that in general the probability distributions
are skewed to the right, since there is a higher probability of the effective-
ness level required being considerably over than considerably under the
expected outcome. If this skewness does in fact exist, the case for over-
shooting is stronger than is presented here.
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This distribution defines (in period one) for each x along the abcissa a

probability density f(x) that x effectiveness units will be required (in
period two) when the system is operational.

The decision maker also has a loss function which describes, if he has
overbuilt, the cost in excess of that which he needed to have spent, and if
he has allocated insufficient resources, the net cosc of reprogramming. He
suffers no loss if he has guessed the outcome correctly. For simplicity, it
is assumed that the loss is strictly a function of the difference between
the stochastic effectiveness requirement, x, and the programmed level of
effectiveness, A, and is independent of the absolute levels of x and A. A
loss function j(x-A) is shown in Figure 2.

Figure 2

Ax-A) = cost

effectiveness

( - - - - - - - - - - - - - - - - A . . . . . . . . . . . . . . . . . . . . . . . . . . . -• u n i t s

Conditional Loss Function for Overbuilding and Reprogramming

If the decision maker guesses the outcome correctly he suffers no loss,
and is at A. If he overbuilds he is to the left of A and suffers a loss as
indicated by the functional relationship because he has spent more than was
necessary to develop his system. If he fails to develop sufficient effective-
ness and is therefore to the right of A, he must redo some of the engineering
and design, add more components or ot1erwise reprogram. This may involve a
higher cost than that of overbuilding. In the extreme case the cost of
extensive reprogramming may be such as to make it cheaper to rebuild the system
entirely.
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Equipped with the loss and probability functions, the decision maker
is in a position to minimize his total expected loss. This is calculated
by multiplying the different losses by the probability of suffering that
loss, and summing the resulting products. The probability function is
given and different program levels are examined to see which one results
in the least expected cost. This corresponds to superimposing the loss
on the probability function such that expected loss is minimized. For
continuous functions, the expression for the expected total cost is

f (x) J(x-A) dx, where e(x-A) is the loss function and f (x) is

the probability function. 7he loss f(x-A) is multiplied by the probability
of suffering that loss, f (x), and the conditional losses are summed up or
integrated over the range of the probability function. The expression
for the expected total cost is minimized through the usual methods of taking
the derivative with respect to x and equating the resulting function to zero.
Given a symmetric probability distribution, if the cost of reprogramming per
unit of effectiveness exceeds that of overbuilding, the minimum cost A will
occur at a value greater than the mean, E (x), of the probability distribu-
tion (i.e., to its right along the abcissa), as in Figure 3.

Figure 3

f(x) & £(x-A)

E x) A

Balancing the Expected Costs of Overbuilding and Reprogramming
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The general answer is the same in the multi-period cane to which the
reader's attention is now directed; given loss curves and probability
distribution as above, cost is minimized by overshooting the expected re-
quired effectiveness. While it may not be possible in practice to obtain
the functional relationships, the direction and nature of an improved policy
is appartnt.

It may be instructive to assume that the planned effectiveness require-
ment increases monotonically in discrete jumps (at periodic re-examinations)
and that the expense in building the completed system is well in excess of
that originally planned. Present budgeting methods can be traced (see
Figure 4).

Figure 4

cost

_____total Lhrough
time T as planned at

/* P3 time t i

X _planned expendi-
ture, PXi., as viewed at t.

_ .- - - PX _ .... actual expenditure

a "pattern
. ...... ... • -time

t tI t 2 t3 t4

Expenditure Pattern under Present Policy --

Estimated Required Effectiveness Increasing with Time

At time to, a units of effectiveness are determined to be the most likely
requirement at time T. At time t1 the program is reviewed and it is
determined that an additional b units are required, and so on until t4
when an accurate appraisal is finally made. What spending pattern is
indicated by this? The decision maker plans for a units and establishes
a cumulative planned expenditure curve, PX . The planned expenditure as
viewed at to and the actual are identical until t1 when the program is
reconsidered. Since a higher level of expenditure is called for at that
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time, a new spending plan PX is developed based on the new estimate, and
again the new planned and aciual are identical between t1 and t 2. This
pattern is followed until the completion date T when the system is in
operation.

We now want to examine the path expected under the overshooting policy

(see Figure 5).

Figure 5

cost

___ expenditure pattern

A b' without initial overshoot

PX4' •planned total cost
with initial overshoot

PX .. . - a)

actual (and planned)
expenditure pattern

a-------------planned expenditure

TtimetI t2 t t Tte

Expenditure Pattern Under Overshooting Policy --

Estimated Required Effectiveness Increasing with Time

The estimate at period t of the final effectiveness requirement is a, the same
as before. However, instead of planning expenditure to achieve effectiveness
a, we select some new level a', with a'? a. Based on a', a planned expendi-
ture rate PX' is established, and followed until t4 , rather than until t as
before. At t04 additional investment is deemed necessary, but because oi
the initial overshoot, an amount b' is saved by virtue of fewer instances
of reprogramming. It is also conceivable that the initial overshoot, (a' - a),
results in overbuilding and the cost of meeting effectiveness requirements
is considerably higher than if an overshooting policy were not pursued.

II. AN ANALYTIC SOLUTION

Before delving too deeply into mathematical terminology, it may be
revealing to examine, in a relatively non-quantitative manner, the principle
underlying the analytic solution.
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1. The Principle Underlying the Dynamic Programming Approach

Intuitively one might conceive of the problem at hand as being
that of selecting the path involving minimum expense from one efd to the
other of a grid where each column of "nodes", designated by circles,
denotes a point in time, and within each column the individual node
represents possible states for the programmed effectiveness and estimated
effectiveness requirements. Let us assume that the decision maker is
constructing his system over five time periods and that there are four
states that the program or estimate can be in at any one time (see
Figure 6).

Figure 6

0 0 0 0

b 0 0

b o 0 0 0 0 •!

tI t2 t3 t4 t5 T

Grid Showing Possible Program and Estimate States through Time

The estimates of system needs as well as the program itself traverse the
grid from S to T, the start of the program to the end. At each succeeding
time period both the program and the estimate are at particular nodes or
states. There are costs and rewards attached to moving the program up and
down the column of nodes. The decision maker wants to go from S to T
across the grid at minimum cost. At each period he can re-estimate system
needs and can reprogram upward or downward at a known cost. He also knows
the state of the program at that time, the probability, given his revised
estimate, of any particular node being the estimate in the following period,
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as well as the cost of adjusting the program in that period to any node.
The decision maker's policy consists in establishing a program for each
period at a node such that he minimizes the expected cost of building the
system.

He does this using the technique of dynamic programming. This
involves first establishing an optimal policy from the penultimate period,
T-1, to the last period, T; then, using this information proceeding from
period T-2 to period T, and so on, successively working backwards, one
period at a time to the initial decision point. The next to last period
in this example is t 5 . Because the world is uncertain, both his program
and estimate may be at any of the four nodes. He must therefore develop
a policy, given program and estimate states at any ccmbination of nodes at
t5, as to the level at which he would establish his new program using the
information described above. His calculations yield both the best policy,
given that he is at a particular combination of states, and what he expects
that policy to cost. Having developed this information for t 5 (and not
before) he is able to answer the same questions for t4 . He knows the cost
of adjusting his program at that time, the probability of transformation
from each estimate in t 4 to any estimate at t , and on the previous iteration
he has already calculated the expected cost oi being at any combination of
program and estimate states in t . Thus he establishes the best policy
through time T, with its expecteg cost, given a program and estimate at
any combination of nodes at t4 . Now, and only now, may he develop this
information for t 3 and so on back to the start of the program. These
calculations produce an optimal policy for each t., in particular for the
current period, tl, as well as the expected costs 3associated with it.
If the program state chosen for the first period exceeds the estimate
state, this may be described as a policy of overshooting.

2. The Dynamic Programming Solution7

This section sets forth an analytic, normative solution which defines
the optimal program over several time periods using a dynamic program formu-
lation. The reprogramming decision is made at discrete intervals and the
probability distribution is discrete. This does not change the solution
since the time and probability intervals can be made small.

Let T be the final time period. There are two relevant state
variables,

1. T-. program at jth state at the start of time t,j
measured in effectiveness units as of T. The new program determined in

period t is T-t

2. E t = estimate at ith state of final effectiveness require-2 Ei

ments at T as viewed at time t.

7The more casual reader may wish to omit this section; the Mathematics
are a quantification of the theory already presented.
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For each period t there is available an Et and a -i the
states of the estimate and program respectively.

The dynamic programming solution may be expressed equivalently
using equations or matrices. We begin with the equation formulation and
solve recursively starting from period T-1 to the start of the program.
This involves defining the following variables:

Pt the probability transformation from Et to E t+l t
t+l k

the probability of an estimate Ek given an estimate EtV
Thus, for each Et there is defined a probability trans-

Et+l; t
formation to each k ; kPik I

rkd , the expected cost of entering period t with an estimate
k Et t-l T

Ek and a program T7YL7 . In the final time period, rkk is

the cost of having overbuilt the system under consideration
,rT> T - T .- Tfor , E k; for E k> n t it is the cost of reprogramming

at time T from T-1T to T-k. In the last period, the program

after adjustment can not be less than the estimate ETk

mt the cost of reprogramming from "T- t'l to

The following i'ý.puts are required:

tik for all i, k and t

tro for all k and ., for T only

m j for all J, 9, and t.

The general solution of the dynamic programming problem is given by
= rain t tliJ m ikm tk + ,t I

In the next to last period, the optimal policy involves adjusting from T7t-i

toi1 where the apprepriate 11 is given by solving equation (1) for

t = T-1. At time T-l, the program and estimate are T T-2 and E,"
T-1 J

Adjustment to each conceivable 1-1 I is examined and since the state of

the program and estimate are not known beforehand, a policy must be formu-T-2j T-l h xetdttlcs
lated alternatively for each 1T-2 and each ET -

of leaving T-1 with -1 I is the cost of adjusting the program from state j
T-1to state Q in this time period, mjý , plus the expected cost of entering
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the final time period in state (pk r . The expected cost

is calculated for each TI I- and the minimum over the •'s ie selected.

This minimum is calculated for each combination ofrT T-2 and E. T-

The resulting expected minimum costs at T-l are used as the rks for

the calculation for T-2 using equation (1) and the dynamic program is solved

for that period. The program is in state -I T-3. with E.T-2 and we wish to ad-

just to a -2 such that net expected costs through T are minimized. T-2
T-2 T-3 ik

is given as is mT , the cost of adjusting the program from T- to
T-1 I

V -2. For each k and • ,the ry has been calculated in the previous

period through equation (1). The rkL's and conditional optimal policies are

then calculated for T-3 and so on back to the current decision period.

For the corresponding matrix formulation the following matrices are

defined:
t tP a Markov matrix, which has a typical element ptk, the probability

transformation from Et Et4Ili o k"

t t

M which has a typical element mji, the cost of reprogramming from

state j to state Y in time period t.
Rt which has a typical element r'k which is the cost of being in

state Ek, T--i entering period t.

As before, the following inputs are required:
pt for all I, k and t

Rt for all I and k, for T only
Mt for all j, and t.

Fur any matrix, A, with elements a let A signify the jth column

vector of A, and A. the ith row vector of A. Then the expected cost associated" t t-I t+

with being in state F. and anyT is R. min u(Pi. R ) + M Iwhere U

is a column vector having the same number of elements as there are states with

each element equal to 1. U(P Rt+l) + Mt is calculated for each i and

yields a square matrix for each i. Minimizing on e corresponds to taking the
t

minimum of each row to form the ith column vector of R . As in the equation

formulation, the solution is derived recursively starting with period T-l,

then proceeding to period T-2, and so on until the current decision period

is reached.
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III. GENERAL NATURE OF COST AND PROBABILITY FUNCTIONS

While it may not be possible to derive all of the inputs necessary
for an empirical analysis, certain hypotheses may be made regarding the
relative nature of the probability and cost curves which determine the
solution.

1. The Probability Function

As mentioned in Section II, there are two basic sources of
uncertainty involved in developing a large scale system, that which relates
to "engineering", and that which relates to "state of the world" considera-
tions. In general, that due to the state of the world increases as the time
span for the program increases. The extent of overshooting then will in-
crease with the time span. Engineering uncertainty will vary as an inverse
function of the degree of experience in constructing that particular type
of system.

2. The Cost Function

When a system has been overbuilt, the net expected cost is the
cost of the actual construction minus that of the system which would just
accomplish the pre-assigned mission. When reprogramming is necessary, the
net expected cost is the cost of achieving the required effectiveness
having initially programmed for less, minus what would have been the cost
of programming directly for the correct effectiveness requirement. The cost
of upward readjustment (reprogramming) after construction is underway or
near completion is a function of system flexibility; the less flexible the
system the more it costs to reprogram. Here, a distinction can be made
between single and multiple unit systems. A single unit system, consisting
of one or at most a few units, is reprogrammed primarily by altering its
design thus affecting its capacity, whereas the reprogramming of a multiple
unit system which is procured in quantity, as is true of most weapon systems,
usually involves changing the number of units to be procured. This model is
applicable to both types although one would expect the cost of reprogramming
to be higher in the former due to lack of flexibility. Consequently, a
higher degree of overshooting relative to the mosL likely outcome is indi-
cated for single unit systems. While the distinction is often a matter of
degree (is a large-scale command and control network with several radars
a single or a multiple system?), electronic systems are in general single
unit in nature and the expenses of reprogramming, where called for, are
high.

Finally, the cost of reprogramming changes with time. As the system
nears the completion date, the cost of reprogramming rises because more com-
ponents need to be redesigned and/or rebuilt. However, the uncertainty
decreases as the completion date approaches.
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IV. !MPLICATIONS FOR TIMING OF PROJECTS

The theory favoring overshooting of effectiveness goals has two
implications as regards the timing of projects under consideration. These

refer to the timing of individual projects given a fixed budget, and the
relative timing of plarming and acquisition. When the decision maker is
constrained by a fixed budget, it is implied that fewer projects will be
undettaken at the time of adoption of the theory. Assume a fixed budget
with ordered preferences for four systems A through D (see Figure 7)

Figure 7

A A A

B B
BB

CCC

-- -C C '
D

Started Finished Started Finished

NO OVERSHOOT POLICY WITH OVERSHOOT POLICY

Comparative Number of Projects Undertaken
with and without Overshooting Policy

where A is considered to be of greatest importance. If the most likely
outcome is used as an estimate, the four projects are started. After a
time, owing to the uncertainty involved, some become more expensive and
others cheaper. However, the cost of reprogramming is high and in some
future time period the low priority project may be dropped. Under the
overshooting policy, A, B and C only would be undertaken initially because
more investment would be required for these projects to achieve the same
goal. However, because of the cost savings realized, it might be possible
to pick up another project, D', at a later date (see Figure 7).

8The budget is for all intents and purposes fixed at some level of decision
making. If it is not fixed for a particular agency or department, it might
be fixed for the Federal Government because of political considerations. If
not, it is definitely fixed for the country as a whole.
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The second implication refers to the relative timing of the planning
phase on one hand and the acquisition phase on the other. Let the planning
on a given system start at a fixed time. t., and the acquisition end at a
fixed time T (see Figure 8).

Figure 8

PLAN~NING ACQUISITION OPERATION-
t T

The Three Phases in the Development of a Typical Military System

Becaua the uncertainty (variance of the probability function) decreases
with time, there is a saving which can result merely by postponing the
acquisition phase thereby reducing the likelihood of extensive reprogramming.
This is traded off against the expense of speeding up the process of
acquisition. However, the extent to which the start of the acquisition
period should be delayed is less if an overshooting policy is followed
because this policy reduces the cost of uncertainty during acquisition.
Under certain circumstances it might be possible to conduct research
directed toward the reduction of uncertainty since a better ability to pre-
dict the state of the world at the time the system becomes operational
would reduce the uncertainty and thereby reduce the expected cost.

V. A NOTE ON THE ABILITY TO OVERSHOOT

Hitherto it has been assumed that "effectiveness" is a unidimensional
quantity. In practice this is not the case and technological factors may
prevent building more effectiveness into the system. On the other hand,
tradeoffs among parts of the system may be possible. One might hypothesize
a situation where a computer performs functions as part of a command and
control network. The decision maker would like to overshoot by having a
more rapid machine, but the speed already planned has reached the limit of the
state of the art at that time. He may, however, find that increasing memory
capacity or input/output speed accomplishes the same purpose in terms of
the desired results.

This paper has discussed the concept of overshooting system effective-
ness to accomplish a predetermined mission at a fixed future date. The
theory is more general than this. A mission is accomplished through one or

more systems; each system is composed of subsystems, components and sub-
components. Each part of the system exists for a certain purpose and the



W-5271 15

overshooting theory holds at each level of analysis. In other words,
it may pay to overshoot in designing the sub-components to ensure that
the components of which they are a part function as desired, and similarly
for the subsystem and the system level. On the other hand, the extent
of overshooting which minimizes cost is reduced if deficiencies in one subcom-
ponent may be compensated for by overcapacity in another.

VI. LESSONS FOR THE POLICY MAKER
This paper has presented criteria which should be used to determinei

the level of resource allocation which minimizes expected costs of a
military system designed to accomplish a mission at a specified time in an
uncertain world. The analytic solution presented does yield an optimum
under the assumptions although the task of determining this optimal program
presents difficult problems of data collection. The theory as it stands,
however, can lead to an improved policy. Military decision makers should
be cognizant of the fact that the optimal program is determined jointly by
both the probability and the cost functions, not by the mean or modal
effectiveness requirement alone. Because of possible reprogranmning costs
ýhe optimum will in most cases be at an investment level above both the most
likely value a.d the expected value of the probability function taken alone.

P. Fox -'

PFimpm
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